

Cellular Immunotherapy for Myeloma

Edward A. Stadtmauer, MD Chief, Hematologic Malignancies Section Professor of Medicine Abramson Cancer Center University of Pennsylvania Philadelphia, Pa

IMF Symposium October 13, 2018

Immunotherapy for MM: Targets and Tools

Adoptive T cell therapy (three major approaches)

• June et al Sci Trans Med 2015

the cure is with

Making CAR T-Cells

How CAR T-Cell Therapy Works

Anatomy of a Chimeric Antigen Receptor (CAR)

A single-chain variable fragment (scFv) is not actually a fragment of an antibody, but instead is a fusion protein of the

Penn Medicine

cure is within

Autologous T Cells Transduced w/ Anti-CD19 Receptor Spliced to CD3 zeta and 4-1BB Signaling Domains

Anti-CD3/anti-CD28 mab coated bead stimulation (artificial DC)

CARs directed against CD19 have been tested in CLL and ALL

CART19 (tisagenlecleucel-T): Penn Med Overview

Slide courtesy of Carl June

CD19-targeted CAR T cells for B cell malignancies

- Experience from numerous national and international trials
 - autologous and allogeneic T cells
- * Responses seen in heavily-pretreated CLL, ALL, and B-cell NHL
 - ORR 40-50% in CLL, 80% in ALL, 50-80% in NHL
 - some durable CRs > 5 years

Davila et al, Science Trans Med 2014; Porter et al, ASH 2013; #873; Maus et al, Blood 2014,

🞇 Penn Medicine

F.D.A. Approves First Gene-Altering Leukemia Treatment,

Costing \$475,000 R/R ALL (age <25 yr) CD19 Driected CAR New York Times, 8/30/2017 AND AGAIN 5/2/18 in R/R B-NHL AND AGAIN 10/18 in R/R B-NHL

Flash Mob at Penn Medicine FDA Approval CAR T

But not without toxicity

- On target toxicities:
 - Tumor lysis syndrome
 - B cell aplasia
 - hypogammaglobulinemia
- Off target toxicities:
 - Cytokine release syndrome
 - persistent high fevers, rigors,
 - myalgias, hypotension, hypoxia,
 - neurologic dysfunction, HLH/macrophage activation synarome
 - very high IL6, also IFN-gamma, TNF
 - responds to steroids \rightarrow but lose CAR T cells
 - tocilizumab (anti-IL6 receptor mAb) can abrogate CRS
 - CNS toxicity
 - The causative pathophysiology of these neurologic side effects is unknown, though given similar events reported with blinatumomab administration
 - The neurologic toxicity has been reversible in a majority of cases

CAR T Therapy is Complicated and Expensive Is the Juice Worth the Squeeze?

The classics:

- CD138
- CD38
- CD56
- kappa light chain

The new models:

- Lewis Y
- CD44v6/CD229
- MAGE A3/NY-ESO-1
- CS1/SLAMF7
- BCMA (B-cell Maturation Antigen)
- Integrin beta 7

And... CD19 as a target in myeloma?

BCMA (B-cell Maturation Antigen)

- Receptor for BAFF (Blys) and APRIL
- Expressed on plasma cells, some mature B cell subsets, and plasmacytoid DC's
 - Maintains plasma cell • homeostasis
- Highly expressed on myeloma cells
- Soluble BCMA in patient serum
- Promotes MM pathogenesis

Study design: Adam Cohen, MD PI

ABRAMSON CANCER CENTER

Renn Medicine

Treated Patient characteristics

	All patients (n=24)			
Age	58 (44-75)			
Gender	67% M; 33% F			
Yrs from diagnosis	4.6 (1.8 – 14.5)			
Prior lines of therapy	7 (3-13)			
Lenalidomide	100%			
Bortezomib	100%			
Pomalidomide	92%	Cohort 1	Cohort 2	Cohort 3
Carfilzomib or Oprozomib	96%	(n=9)	(n=5)	(n=10)
Daratumumab	75%	44%	80%	100%
Dual- / Quad- / Penta-refractory	96% / 54% / 42%	89% / 56% / 33%	100% / 60% / 40%	100% / 50% / 50
Autologous / Allogeneic SCT	92% / 4%			
Cyclophosphamide	100%			
Anti-PD1	29%			
High-risk genetics -17p or <i>TP53</i> mutation	96% 71%			
Extramedullary dz	29%			
% BM plasma cells	70% (0 - 95)			

Clinical activity

🞇 Penn Medicine

Cytokine release syndrome in 8/9 (89%)

- Grade 1 (n=1); Grade 2 (n=4); Grade 3 (n=2); Grade 4 (n=1)
- 4/9 received tocilizumab
- Median hospital stay = 9 days (range 3 40)
- Dose-limiting toxicity (pt. 03):
 - Grade 4 PRES (posterior reversible encephalopathy syndrome)
 - Recurrent seizures, obtundation
 - MRI brain: diffuse enhancement w/ swelling and sulcal effacement.
 - Rapid peripheral CART expansion
 - Solumedrol 1 g/d x 3→Cytoxan 1.5 g/m2 day 17
 - Rapid improvement, resolution of MRI changes and neuro deficits
 - Garfall et al, ASH 2016, #5702

CART-BCMA Cells for Multiple Myeloma

Subject 1

• 66M, IgG kappa MM dx'd April 2006

11 prior lines, PD on last therapy
Pre-treatment bone marrow bx:
70% MM cells
FISH: gain CCND1, del17p,
loss of MAF (16q)
NGS: mutations in *NRAS*, *TP53*, *TP53*

ABRAMSON CANCER CENTE

🞇 Penn Medicine

BCMA CAR Cells for Multiple Myeloma

Subject 1

- +2 x 10⁸ BCMA CAR cells
 - no lymphodepletion
- Grade 3 CRS→ responded to tocilizumab
- Robust BCMA CAR expansion and persistence Pre-tx Day 7

tne

IS

ABRAMSON CANCER CENTER

re

🐺 Penn Medicine

BCMA CAR Cells for Multiple Myeloma

Subject 1

- Day 28 marrow: negative by IHC and flow
- VGPR-> sCR (continued 2.5 years later!)

bb2121: AN OPTIMAL BCMA CAR T CELL DESIGN

- Autologous T cells transduced with a lentiviral vector encoding a CAR specific for human BCMA
- State of the art lentiviral vector system
- Optimal 4-1BB costimulatory signaling domain: associated with less acute toxicity and more durable CAR T cell persistence than CD28 costimulatory domain¹

^{1.} Ali SI, et al. Blood. 2016;128(13):1688-700.

the cure is

CRB-401 PHASE 1 STUDY DESIGN

Presented By Noopur Raje at 2018 ASCO Annual Meeting

TREATMENT HISTORY

	Esca (N=	Escalation (N=21)		Expansion (N=22)	
Median (min, max) prior regimens Prior autologous SCT, n (%) 0 1 >1	7 (3 21 (15 6 (Escalati	7 (3, 14) 21 (100) 0 15 (71) 6 (29) Escalation (N=21)		8 (3, 23) 19 (86) 3 (14) 14 (64) 5 (23) Expansion (N=22)	
	Exposed	Refractory	Exposed	Refractory	
Prior therapies, n (%)					
Bortezomib	21 (100)	14 (67)	22 (100)	16 (73)	
Carfilzomib	19 (91)	12 (57)	21 (96)	14 (64)	
Lenalidomide	21 (100)	19 (91)	22 (100)	18 (82)	
Pomalidomide	19 (91)	15 (71)	22 (100)	21 (96)	
Daratumumab	15 (71)	10 (48)	22 (100)	19 (86)	
Exposed/Refractory, n (%)			21		
Bort/Len	21 (100)	14 (67)	22 (100)	14 (64)	
Bort/Len/Car/Pom/Dara	15 (71)	6 (29)	21 (96)	7 (32)	

Renn Medicine

Presented By Noopur Raje at 2018 ASCO Annual Meeting

the cure is with

ADVERSE EVENTS OF SPECIAL INTEREST

- No grade 4 CRS events
- No fatal CRS or neurotoxicity events

• 31/40 (78%) recovered ANC to ≥1000/µL by Day 32

• 22/40 (55%) recovered PLT to ≥50,000/µL by Day 32

the

WIT

ABRAMSON CANCER CENTER

Data cutoff: March 29, 2018. NE, not estimable. ^aCRS uniformly graded per Lee DW, et al. *Blood.* 2014;124(2):188-195. ^bEvents occurring in first 28 d and including dizziness, bradyphrenia, somnolence, confusional state, nystagnmus, insomnia, memory impairment, depressed level of consciousness, neurotoxicity, lethargy, tremor and hallucination. ^cIncludes the SOC Infections and Infestations. Events observed in >10% include upper respiratory tract infection and pneumonia. ^dIncludes patients treated with active doses (150–800 × 10⁶ CAR+ T cells; N=40). Median and 95% CI from Kaplan-Meier estimate. ^eTime from first bb2121 infusion to the first grade ≤2 event after day 32.

Presented By Noopur Raje at 2018 ASCO Annual Meeting

PROGRESSION-FREE SURVIVAL

- mPFS of 11.8 months at active doses (≥150 × 10⁶ CAR+ T cells) in 18 subjects in dose escalation phase
- mPFS of 17.7 months in 16 responding subjects who are MRD-negative

Data cutoff: March 29, 2018. Median and 95% CI from Kaplan-Meier estimate. NE, not estimable. ^aPFS in dose escalation cohort.

Presented By Noopur Raje at 2018 ASCO Annual Meeting

OVERALL SUMMARY

bb2121 at active doses (≥150 × 10⁶ CAR+ T cells) induces deep and durable responses in a heavily pretreated population with R/R MM

- Median PFS of 11.8 months for patients in the dose escalation cohort
- MRD-negative results in 100% of 16 evaluable responding patients; median PFS of 17.7 months
- Comparable ORR in patients with low and high BCMA-expressing MM
- Dose response relationship observed across the active dose ranges
- Higher peak CAR T expansion in responders versus nonresponders

To date, the safety profile of bb2121 has been manageable at doses as high as 800 × 10⁶ CAR+ T cells

- Mostly grade 1/2 CRS observed with infrequent tocilizumab and corticosteroid use
- The 2 events of grade 3 CRS resolved within 24 hours
- 1 case of reversible grade 4 neurotoxicity without additional events during expansion

the cure

Legend Biotech: Phase 1 LCAR-B38M (anti-BCMA CAR T cells) in RRMM

Fan et al, ASCO 2017, #LBA3001

Presented By Adam Cohen at 2018 ASCO Annual Meeting

Comparison of CART-BCMA trials

	NCI	Penn/NVS	Bluebird	Legend
Sites	Single	Single	Multi-center	Multi-center
scFv	Murine	Human	Murine	Camelid
Vector	Gamma- retroviral	Lentiviral	Lentiviral	??
Domains	CD3/CD28	CD3/41BB	CD3/41BB	CD3/41BB
BCMA+ required	Yes (IHC) (52/85 (62%+)	No	Yes (IHC) (60%+)	Yes (flow) (??)
Dosing	0.3 – 9x10 ⁶ /kg 1 day	5 x 10 ⁸ 3 days	0.5 – 8 x10 ⁸ 1 day	0.6 – 7x10 ⁶ /kg 3 days
Condition ing	Flu/Cy	None or Cy	Flu/Cy	Су
Med # priors	7*	7	6	3-4
*includes XRT				

CENTER

Ali et al, Blood 2016; Cohen et al, ASH 2016; Lin et al, EHA 2017; Fan et al, ASCO 2017

Designing Better CARS

Targets

Single vs multiple

Constructs

- antigen recognition
- stimulatory molecules

Vectors

- Viral
- Non-viral approaches

Dose

- Off switches
- Lympho-depletion
- Single vs serial infusions
- Patient selection
 - Test for target
 - Early vs heavily pre-treated disease
 - Early vs dysfunctional T-cells
 - Early vs late dysfunctional host

CAR T cells for MM in 2018

Antigen	Trial Site/Company	Accrual
ВСМА	National Cancer Institute	completed (n=26)
ВСМА	University of Pennsylvania / Novartis	completed (n=25)
ВСМА	Multi-site phase 1/ Bluebird	ongoing (n=21 reported)
BCMA	Multi-site phase 2/ Bluebird	ongoing
ВСМА	Multi-site phase 1 / Bluebird (bb21217 product)	ongoing
ВСМА	Multi-site phase 1/2, Nanjing Legend	ongoing (n=19 reported)
ВСМА	Memorial Sloan-Kettering / Juno	ongoing (n=6 reported)
BCMA	Fred Hutchinson / Juno	ongoing
BCMA	Multi-site phase 1/2, Juno	ongoing
BCMA	Multi-site phase 1, Poseida	ongoing
BCMA	Multi-site phase 1, Kite	ongoing
BCMA	Multiple hospital sites in China	ongoing
BCMA	Multi-site phase 1/2, Autolus Limited	ongoing
BCMA	Virginia Cancer Specialists, Cartesian Therapeutics	ongoing

Renn Medicine

Antigen	Trial Site/Company	Accrual
CD19	University of Pennsylvania / Novartis	completed (n=10)
CD19 + BCMA	University of Pennsylvania / Novartis	open 2018
CD19 + BCMA	Soochow University, China	ongoing (n=10 reported)
CD138	General Hospital of PLA, China	completed (n=5)
CD138	Soochow University, China	ongoing
Kappa LC	Baylor University	completed (n=7 MM)
CD38	Multi-site phase 1, Sorrento Therapeutics	ongoing
CD38	Shenzhen Geno-Immune Medical Institute, China	ongoing
CD38	n/a	pre-clinical
SLAMF7/ CS1	n/a	pre-clinical

www.clinicaltrials.gov, March 2018

Rationale for anti-CD19 therapy in myeloma

- Plasma cells are derived from B-lymphocytes so malignant precursors likely are CD19 + even if the majority of plasma cells are CD19 neg by conventional flow cytometry
- Intraclonal heterogeneity (and plasticity) in myeloma
 - Genetic: somatic mutations, copy number abnormalities, cytogenetic features.
 - <u>Phenotypic</u>: B cell
 Plasma cell
 - <u>Functional</u>: Stem-cell/clonogenic
 Non-clonogenic
- The B cell phenotype may be associated with stem-cell/clonogenic properties and CD19+ cells may be a reservoir of
 resistant precusors

the c

ABRAMSON CANCER CENT

• Specifically targeting B cells may improve durability of response to PC-directed therapies

Pilot Study of CART19 in Multiple Myeloma: Al Garfall PI (Support of hypothesis design)

In our retrospective analysis of second salvage ASCT for r/r MM in

"modern era", 56% response (≥PR), no remission inversions.

Garfall et al, NEJM September 10 2015

Pilot Study of CTL019 in Advanced Multiple Myeloma: Pt -01

48 y/o F IgA kappa TTP 6 mo after ASCT #1 10 prior lines of therapy over 5 years Lenalidomide, pomalidomide, Bortezomib, carfilzomib, MEL 200 SCT, Vorinostat, elotuzumab, cyclophosphamide

Transplant Day

Pilot Study of CTL019 in Advanced Multiple Myeloma: Pt 02413-01

Pilot Study of CTL019 in Advanced Multiple Myeloma: Pt 02413-01

Perelman School of Medicine UNIVERSITY OF PENNSYLVANIA

Garfall et al, NEJM September 10 2015

Clinical responses after ASCT + anti-CD19 CAR T cells

Subjects 01 (and 05) progressed with isolated extramedullary plasmacytomas and negative bone marrows.

Garfall et al, ASH 2016, #974

Patient Characteristics and Outcomes

ID	Age/ Sex	TTP1 (days)	Prior Tx	Baseline Prognostic Features	Mel. Dose
1	48F	181	10	Complex karyotype, t(4;14), del17p, +1q21	140
2	58M	341	7	Complex karyotype, BRAFV600E	200
3	65F	210	3	Plasma cell leukemia	140
5	64F	127	7	t(4;14), +1q, <pr to<br="">induction</pr>	140
6	53M	100	2	BRAF V600E mutation	140
7	62F	342	6	Not available	140
8	57F	334	4	t(4;14), +1q	200
9	62M	266	4	t(4;14), +1q	140
10	68F	249	10	del(17p), +1q	140
12	59M	325	6	Not available	200

Garfall et al, ASH 2016, #974

Dual BCMA/CD19 Directed CAR Myeloma Trial^{Correlates} of favorable clinical outcome

- peak CTL019 frequency in bone marrow
- emergence of humoral and cellular immune responses against the stem-cell antigen Sox2.

Ex-vivo treatment of primary myeloma samples with a combination of CTL019 and BCMA CAR T

 reliably inhibited myeloma colony formation in vitro while either alone inhibited colony formation inconsistently.

Garfall et al, NEJM 2015, JCI Insight 2018

NY-ESO1 TCR T cells

Phase 1/2 of autologous NY-ESO1specific T cells after autoSCT in MM (n=25)

- Well-tolerated
- T cells expanded, homed to BM, persisted in some
- 70% nCR/CR
- Median progression-free survival 19.1 mos
- Relapse assoc. with loss of NYESO1 or T cells

Pilot study of CRISPR gene-edited, NY-ESO1-specfic T cells in MM, sarcoma, and melanoma

- To open 2018
 - Penn, MDACC, UCSF

NY-ESO-1 CRISPR (TCR-PD1) Triple Edited T Cell Study Schema (NYCE Cells)

Sponsor: Tmunity and Parker Institute for Cancer Immunotherapy

What's next for cellular therapy?

Gene-editing

- "Universal" CAR T cells
- PD-1 knock-out
 - Ph 1 of CRISPR/Cas9 gene-edited NY-ESO1 TCR T cells
- Suicide genes/safety domains
- Novel constructs, vectors
- Serial infusions/re-treatment
- Combinations
 - IMiDs
 - Checkpoint blockade
 - Cytokines
 - Vaccines
 - Multiple CARs

Earlier treatment

CANCER

Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells

Myeloma Cellular and Vaccine Immunotherapy:

- Investigation of cellular and vaccine therapy for myeloma has been ongoing for almost 2 decades
- Myeloma specific targeted vaccinations show immune responses but limited clinical responses
 - Dendritic cell vaccines most promising
- Cellular vaccine approaches have been most frequently added after myeloablative alkylating agent chemotherapy and AHCT
 - Frequent evidence for immune response but limited evidence for incremental clinical benefit
- Multiple promising targets for CARs, MILs and affinity enhanced TCRs:
 - BCMA, NY-ESO-1, CD19, CD138, CD38, CD56, kappa, Lewis Y, CD44v6, CS1
- Functional CAR and affinity enhanced TCR T cells can be generated from MM patients
- CAR T and TCR T and NK cells have in vitro and in vivo activity against MM
- Remarkable clinical responses have been seen with BCMA and CD19 genetically modified T Cells
 - Not all patients
 - CRS, CNS, GVHD and on target-off tumor toxicities have generally been limited in frequency, duration and severity

the cure is w

- Need to study approaches to engineer improved activity, persistence and decreased toxicity
- The age of cellular immunotherapy for myeloma is upon us!

Acknowledgements

Principle Investigators Adam Cohen Alfred Garfall **Edward Stadtmauer Carl June**

Penn Myeloma/BMT Dan Vogl **Brendan Weiss** Patricia Mangan Emilie Tilhou **Colleen Erb** Mary Sanchez **Tim Holtz Kelly Kraus** Kathy Cunningham

Funding

Novartis, Adaptimmune Leukemia & Lymphoma Society NIH: K12 CA076931 The Parker Institute ACC Pilot funds : Heme Malignancies TCE, GREG WOLF Foundation Penn Medicine

Heme/Onc Division **David Porter Noelle Frey** Lynn Schuchter **Alison Loren Steve Schuster** Jakub Svoboda

ACC TRP **Karen Dengel** Naseem Kerr Holly McConneville Elizabeth Veloso Lester Lledo Anne Chew **TOO NUMEROUS TO**

PUT ON SLIDE Special Thanks To:

> THE PATIENTS AND THEIR FAMILIES THE INPATIENT AND OUTPATIENT NURSING STAFF, REFERRING MDs THE MYELOMA AND CELLULAR **IMMUNOTHERAPY COMMUNITY**

ACC Shared Resources (Human immunology Core, CRU, Biostatistics, etc)

CCI

Jos Melenhorst Simon Lacey Yolanda Mahnke **Chris Carlson Nina Luning Prak** Martin Carroll Mike Malone

CVPF Bruce L. Levine Zoe Zheng Julio Cotte **Dawn** Meier **Alexey Bersenev** **U** Maryland **Aaron Rapoport** Ashraf Z. Badros Saul Yanovich **Gorgun Akpek** Sunita Phillips Kelly-Marie Betts **Phillip Miller** Sandra Westphal

Adaptimmune **Gwen K Binder-Scholl** Bent K Jakobsen Dominic P Smethurst Helen K Tayton-Martin Joanna E Brewer Alan D Bennett Andrew B Gerry Nick J Pumphrey Lilliam Ribeiro

the cure is